aquarium and pond answers, information, articles, resources

This is a great resource for answers, help, & advice to aquarium and pond questions not found elsewhere; With regular posts & article updates.
In our research; we use aquaculture, horticulture, medical, & university research to compile many of our articles.

  See our AQUARIUM ANSWERS DIRECTORY page for topics by category.  


PUR/PAS vs PAR in Aquarium Reef/Planted Lighting; LED Wavelengths


By Carl Strohmeyer-PAMR 35+ years experience

Updated 7/27/15

photosynthetic action spectrumPUR stands for Photosynthetically Useable Radiation. It is also known as "useful light energy" as well as photosynthetic wavelengths and more commonly of late as Photosynthetic Action Spectrum (PAS)
PUR is a more generic term where as PAS more addresses the specifics since this is where the light energy (protons) activate photosynthesis. Another way to look at this (an analogy using biology), is that proteins are made up of amino acids, of which we know of specific amino acids we need for our physiological processes. Ditto PAS, which describes the specific action spectrums where photons begin photosynthesis.

PUR and more specifically PAS differs from PAR because the basic definition of PAR is ANY light in a specific frequency range of 400 to 700 nanometers that is needed by plants & symbiotic zooanthellic algae.
PUR is the usable portion of PAR or better, where an "action" begins of utilization of light energy by the photosynthetic life which is even better described by PAS.
Of this useful or action spectrum, we know the general range for most photosynthetic life forms. However there are slight variations among different photosynthetic species, which will have a different PUR range to which they respond optimally. Even within these variations, we do know that certain wave lengths such as green/yellow are mostly useless for the photosynthetic life kept by aquarium keepers as research and industrial applications bears out (unless one is purposefully growing cyanobacteria).

As noted in PUR or photosynthetic action spectrum (PAS), there are variations in plants, aquatic plants, and zooxanthellae, in what these optimum exacting spectrums may be. Often these are influenced by water depths which will filter out red light spectrums more than blue, which is why zooxanthellae will generally require higher "spikes" in the blue spectrums.
However what we do know are the generalizations of what these photosynthetic action spectrums are.
As simplified example; if one were to use a scale of 1 to 100 to represent PAR, and say one species might need more at 15 while another need more light energy at 20, these still fall within what we know as PUR or the photosynthetic action spectrum. What also know is that any light that has its primary energy at 50 on our simplified scale, we know that this middle energy is much more useless for the vast majority of photosynthetic life intentionally kept in aquariums or grown in vertical farms.

Further References (there are many more reference throughout and at the end of this article):
*Aquarium Lighting; PUR
*St. Mary's College LED Experiments
In the St. Mary's reference we see evidence of what LEDs using more precise PUR/PAS emitter/LED technology can do for coral growth.

Here is a more recent update from St. Mary's utilizing high efficiency LED lighting:
Sustainable Science Thesis & Abstract Update

In a recent CBS news story, a large "Vertical Farm" in Portage Indiana is using LED lights that are specific to the light energy needed by plants, NOT PAR which so many aquarium keepers seem greatly confused by.
This farm uses just the red and blue spectrum, NOT the green and other spectrums that might be pleasing to us and used unfortunately by some of the most popular LED fixtures, but are less useful to plants and symbiotic zooxanthellae required by corals.
This is a real world application that shows where NOT using lighting that are high in CRI (which is pleasing to us), rather lights using only applicable PAS which uses the least amount of input energy for output of useful light energy.

This question can be asked of naysayers;
Why would a business use lighting that might look better by containing all PAR light spectrums, including more yellow and green (common with most aquarium LED lights in varying amounts which includes the AquaRay, EcoTech, and more, many of whom do not even publish their emitter spectrograms), but then would use more electricity, when using ONLY optimum PAS/wavelength lighting would produce the same or better results for much less electricity costs?
To be blunt, part of the problem is the aquarium hobby being a "non essential business", often thrives on hype and marketing. But when it comes to well funded research in horticultural businesses, they can care less about this hype and go with what works best.

Reference: Vertical farms: "Making nature better"

This targeting of optimum wavelength lighting is becoming more and more widespread in industry, it is only a few in the aquarium hobby that are behind the curve and seem to refuse to perform simple internet searches of optimum growing wavelength and PUR.
I am NOT saying LED lights (or other lights) with high percentages of of green, yellow or use of cool/warm white emitters cannot keep photosynthetic life, only that this is just one reason why a light of lower PAR and input wattage can actually produce more optimum wavelength. As an aquarium keeper, we certainly want our corals and plants to look pleasing, but often this comes at the expense of more wasted light energy then needed.

For clarity, let me emphasize that I am NOT stating PAR is not an important measurement, just that this "light measurement" should never be the only or often even the main consideration in determining the best light for your reef, planted or even just mixed aquarium.

Just using one brand so as to be comparing "apples to apples", the AquaRay Fiji Blue (about 450nm) and Marine White (10,000k) #600 strips both have the same input energy (12 watts), the same drivers, the only difference being the emitter spectrums. Yet the PAR at 400mm from the Marine White is considerable higher than the Fiji Blue.
Does this make the Marine White superior to the Fiji Blue? The answer is not necessarily as it depends upon the application. In this same line of fixtures the Reef White #600 also has a lower PAR than the Marine White #600, yet in most reef applications deeper than 12" of water the Reef White would be the better choice!!

Planted freshwater aquarium with premium LED lighting
The aquarium above is a planted 75 gallon aquarium utilizing two GroBeam LED lights. It is kept "low tech" with no added CO2 other than Flourish Excel and minimal other supplements. The only high tech aspect of this aquarium is the LED lighting that uses high PUR, PAR, licensed emitters, and PWM technology.

Useful Light Energy/PUR/Optimum Wavelength has become one of the more important aspects of choosing an aquarium light since the advent of high end Aquarium LED Light Fixtures.
By high end I mean better and targeted emitter bins, advanced drivers/circuitry versus the many low end LED fixtures available (generally out of China) that essentially are not much better that household LED emitters daisy chained together.

Since even the best of Fluorescent lights such as T5, T2, and SHOs still emit a considerable amount of light energy in light spectrums unusable by photosynthetic life, acquainting oneself with this aspect of light energy is very important if you are considering a new light fixture, especially a high end LED (such as the TMC AquaRay).

Water Depths & PAR/PUR; Including Acropora Reefs:

Spectral Light Absorption, PUR vs PAR in Aquarium Lighting LEDPAS is also affected by water depths, with blue light around 450-480nm having the best useful depth penetration for our aquariums.
This is an important note for many zooanthellic algae symbiotic dependent corals, clams, etc. in choosing the correct light as well as per specimen placement to achieve the best PAS/PUR light energy.

The picture to the above left shows Spectral Light Absorption in certain water depths.
What is noteworthy is that essential near red light energy becomes less viable not much under water surface, as per PAR requirements of Photosynthetic response and Chlorophyll synthesis of plants and green algae.
Further Reference: Aquarium Lighting, PAR, Photosynthetic Response

Plants and zooanthellic algae have adapted to certain depths and is why a 6500K light generally works well (or best) for planted freshwater or refugium aquariums under 20-24 inches of water. While zooanthellic algae dependent corals require more 480nm blue and higher kelvin daylight energy such as 9000K, 10,000K, 14,000K, & 20,000K daylight lights as aquarium depths increase (such as 24+ inches of water depth).

With this information about actual sunlight penetration, we can safely make some accurate assumptions, even if relatively general.
As you can see the Photosynthetic response and Chlorophyll synthesis do NOT penetrate much past 25 and 50 meters of water respectively. So using Acropora Coral as an example, these have been found at varying depths mostly less than 25 meters but generally thrive at 6 meters, producing an environment that is deficient in these Photosynthetic response and Chlorophyll synthesis light PAR spikes would result in less than optimal results.

What the above means to the aquarium keeper is no artificial light; not LED or Metal Halide or any other is going to be equivalent to the energy of the sun (which in the tropics at noon is closer to 6500K at the surface of water).
So using a 20,000K fluorescent, Metal Halide 20,000K, or LED setup that is 2/3 blue is likely NOT going to produce optimum results in a tank of approximately 20 inches or less of depth.
With this lighting in a shallow tank you are more than likely producing environment that simulates many meters deeper than optimum, which still might be fine if this is the depth the specimens being kept are naturally adapted to as per specific wavelengths of light (nanometers)

Reef Lighting Comparison with 200000K Light and natural acropora reef, PUR vs PAR in Aquarium Of course this begs the question of what the comparison would be and at this point I do not have a scientific equivalent (maybe there is one, but this would be difficult with the plethora of lighting choices and their subtle differences).

The picture to the left clears up the confusion in my opinion (& experience too), since this displays an aquarium lit with 20,000K lighting and a natural Acropora reef.
It is obvious that the aquarium is much more blue than the natural reef.

However it is noteworthy since NO artificial light, the best LEDs or even Metal Halide (such as the top notch "Radion" 20K) can approach the sun's energy even in the color temperatures that make up CRI (what looks best to us). The result is that it often takes more "blue" appearing man made light energy to achieve the best possible PUR/PAR for your aquarium 'reef'. Often man-made lights, in particular many of the Johnny-come-lately LEDs will utilize lower kelvin white emitters and red emitters in an attempt to make a more human pleasing light, but as a result often waste more energy outside the essential PUR spikes needed by photosynthetic reef life.

Further Information: Aquarium Lighting; CRI

Reef Tank LED, PUR vs PAR in Aquarium Lighting
To the left is a picture of a 150 gallon reef aquarium that also has Acropora corals (for 6 months at the time of the picture).
PLEASE NOTE; this picture is much closer in color to the natural Acropora reef than the 20,000K light aquarium to the left in the picture above that is unfortunately more common with how many light their aquariums with Metal Halide or LED lights.

The picture to the left is courtesy of "Aquarium Lighting, Facts & Information"
This Reef tank is running AquaRay/AquaBeam NP 1500 & 2000 tiles

What is also noteworthy is that PAR readings taken in 2011 on Bali Island at a coral farm, is that they kept corals for best growth about 1.5-2 meters under water surface. For best pigment intensification, even deeper; 3.5-4 meters.
Here is the point, the average PAR reading was 160 and never exceeded 200, not the higher reading often cited by many for their high intensity lights, especially Metal Halide.
WHY, quite obviously they is much more at play than just PAR and many of the best lights, including Metal Halides simply make up for lack of optimum PUR with higher PAR numbers than needed!!!

The previously noted comparison picture also makes the point that while at 6 meters, an Acropora Coral colony is not all that deep by ocean standards, but try getting your Metal Halide, T5, or LED light to penetrate 6 meters (over 18 feet)!!
This why we MUST pick a light that will closest meet these key photosynthetic response 'spikes', rather than pick a light that most looks like the sunlight underwater at a certain depth to our eyes.
This said, one LED emitter SPECIFICALLY designed for reef life, the Osram Olson NP Blue emitter is probably the closest to this same softer white/blue found naturally in reef containing Acropora coral.

What is also noteworthy and a popular trend is the use of "Near Ultraviolet" emitters (basically roughly between 300-400nm UVB- mostly UVA). This is intended to give a cool "pop" to many LPS and SPS corals, but what readers should note is that EVERY watt of energy used for these emitters is useless for your photosynthetic corals as it is outside the known PAR/PUR spectrums. This simply is a fad, that many LED manufacturers are following, including EcoTech and TMC AquaRay. At least with AquaRay they are coming out with this NUV emitter in a 600 Ultima fixture that is supplemental, NOT as part of a premier self contained reef light fixture as EcoTech has done. While this AquaRay NUV fixture is only currently available in the UK, it should NOT be included as part of your lighting wattage calculations, rather only purchased as a supplement.

Quantum PAR Meters:

Quantum PAR Meter ReadingsSince these are a useful tool, but sometimes over used for determining how effective a light is, I will give a brief explanation along with resources about their use.

First it is noteworthy that a PAR Meter is not 100% accurate in important light energy spikes WITHIN the 400 to 700 nanometer range, so while one light might measure a higher PAR mmol reading, another light might be still superior due to the more important PUR/useful-wavelength output.
The picture above/left depicts this.

The other issue that is thrown around is "Quantum efficiency"; this term generally refers to the efficiency to incident photon to converted electron (IPCE) ratio of a photosensitive device.
This does not mean that this curve is the PUR/wavelength (or photosynthetic action spectrum-PAS) of a Zooxanthellae or plant.

relative quantum efficiencyTo the left is a graph showing the the relative quantum efficiency of such a PAR meter, NOT the known PUR/wavelength (or photosynthetic action spectrum) of photosynthetic plants or Zooxanthellae! A light producing such a spectrum would have a high PAR, show good coral or plants colors, but would not be as efficient a light in energy consumed for the output light energy.
It is also noteworthy that this graph applies more to terrestrial plants than to underwater freshwater plants and especially corals.

Be careful about making the assumption that this means plants, especially water plants and even more so photosynthetic corals need yellow and orange light spectrums in any quantities as some online articles imply, as both extensive practical experience by many as well as the science of PAS shows this to simply not be true.
Even with Terrestrial plants, we know that blue lights along with even more so reds are what matter for optimal efficient growth, this is demonstrated both practically and factually by the Vertical Farms link I provided earlier where 2/3 of the light is provided by the red spectrums and 1/3 by the blue and NO light from green, yellow or even orange. This is again why (as noted earlier too) why a LED such as the AquaRay GroBeam would not be the best choice for an application such as a vertical farm since it too adds cyan, green, yellow and orange spectrums!
We also know from both science and decades of practical experience that without the blue, corals such as acropora will not thrive.

 Effect of drive amperage and color on photon efficiency of LEDs.

To the left is another graph that displays most electrically efficient colors of LEDs, based on moles of photosynthetic photons per joule. These are blue, red, and cool white, respectively.
We also know that some of the earliest LED emitters and common LED emitters still used in LED flashlights tend to be in these more spectrums or type (you can see this when comparing a LED flashlight to halogen flashlight).

Another term that we should know is "Quantum Yield in Photosynthesis".
Quantum yield in photosynthesis is the moles of CO2 fixed per mole of quanta (photons) absorbed, or else the efficiency with which light is converted into fixed carbon. Typically about 0.06 moles CO2 are fixed per mole of quanta under favorable conditions (and normal (ambient) CO2 concentration).

*Quantum efficiency
*Quantum yield of photosynthesis?
*Wikipedia; Photosynthetic Action Spectrum


Spectrograms are often used to determine PUR (Useful Light Energy), however I have found these are not fool proof either.
Although when it comes to many of the LED Aquarium Lights now flooding the market, Spectrograms are often very difficult to come by.
Part of the reason in my opinion and from knowing many in the industry is that the development of new LED emitters and drivers to run the emitters is at a fast pace, while the cost of producing a spectrograph for such a narrow band of users is simply too cost prohibitive (aquarium use of just the better LED emitter bins is but a needle in a haystack in the high end LED emitter industry). The other part of the reason is a bit more deceptive and that is many simply are VERY lacking in essential PUR!

However there are both good and bad LED fixtures with either new spectrographs available or outdated spectrographs. As well while spectrographs are useful, these too do NOT show the whole PUR story anymore than a PAR meter accurately depicts the type of light energy delivered (especially in the blues).

PUR Spectrographs of LED Emitter Light EnergyHowever taken together (PUR Spectrograph and PAR reading), a more complete picture can be extrapolated where the mmol (µMol•m²•sec) reading of a PAR Meter can be combined with the spectrograph of actual specific light energy wavelengths.
If a spectrograph is equal, PAR comparisons can be more accurate too!!

Here are a couple of spectrographs we produced;

*The first to the left displays 12 different spectrograms for singular emitter types, (no mixed emitters).

The light energy spectrograph of the high output 4.5 volt DC LED flashlight is interesting, as it displays a reasonably good spectrograph. HOWEVER the output of actual energy (in wattage and PAR mmol) is obviously much lower than the 3 watt XR, XG, XT, ML, & XB Cree emitters as well as the cutting edge Osram Olson NP Blue emitter.
Similar can be said about the 3 watts total of TMC Flexi Red (spread over 18 inches) and similar LED Strips.
Which is why neither of these are nearly as much of a factor in your aquarium lighting scheme for higher light requiring planted or reef aquariums. This is not to say the Flexi-Red cannot add some "Useful Light Energy" (especially in the near-infrared) as a compliment to say a GroBeam or similar high output LED Fixture.

The picture above can be clicked on to enlarge

*The second is a mixed spectrograph from the TMC Reef White Ultra 1000 (7 14,000K and 3 465-485nm blue emitters)

TMC Reef White 600 and 1000 Spectrograph

Please pardon the quality of the ultra 1000 spectrograph

photosynthetic active range for plants and zooxanthellae corals, marine life, PUR vs PAR in Aquarium LED LightingWhat I will state is that unfortunately many builders of lower PUR output LED fixtures will often only state PAR or at best only briefly mention PUR.
As well many reef keepers still seem to be obsessed with PAR while ignoring the also very important PUR (aka useful light energy or photosynthetic action spectrum) aspect of aquarium lighting.

The facts are you can have a light with a higher PAR be a considerably lesser PUR and thus an INFERIOR light.


*Exhibit ONE that measures a 200 PAR reading at 12 inches
*Exhibit TWO that measures a 120 PAR reading at 12 inches

However Exhibit ONE produces 50% of its energy in the mostly useless green to yellow spectrum and the other 50% in the photosynthetic active range while exhibit TWO produces 90% of its energy in the exact spikes of the photosynthetic active range.

So with the math, this brings down exhibit ONE to essentially 100 useful light energy 100 PAR while exhibit TWO is at 108 useful light energy PAR.
Obviously what appeared to be the inferior light is actually the superior light and likely is more energy efficient besides with less heat loss and no need for a cooling fan!!

As a more extreme analogy, which no Aquarium LED light employs, so I;m using it only to make a point:
*Exhibit ONE that measures a 120 PAR reading at 12 inches
*Exhibit TWO that measures a 200 PAR reading at 12 inches using ONLY green emitters

In this fictitious comparison, Exhibit TWO produces basically ZERO PUR, even though it has a higher PAR.
Hopefully this fictitious comparison drives home the point that one can have a high PAR, but lower (or even no) PUR.

For those who doubt how useless green light energy is, please reference this article:

From the above article:
"Chlorophyll, the green pigment common to all photosynthetic cells, absorbs all wavelengths of visible light EXCEPT green"

A good example is the EcoTech Radion (with off the shelf, non-patented, but still excellent Cree XT-E & XG-E emitters) and AI Sol, versus the AquaBeam Reef White NP 2000 Ultima, which does not have as high a PAR reading, but their PUR is higher per wattage used due to more specific patented emitter bins, PWM, and better drivers (constant current drivers versus RGB control features). It is also noteworthy that the AquaRay 2000 NP as well as the 1500 utilizes the unique Osram Olson NP Blue Emitter which actually is a FULL PUR/PAR Spectrum light, not just blue.

While the EcoTech Radio Pro produces 1100 µMol•m²•sec PAR (at 6" as per EcoTech's published information), the TMC NP 2000 produces 380 µMol•m²•sec (at 15" as per TMC's published information).
The input wattage is 170 watts for the EcoTech and 30 watts for the AquaRay, therefore is takes about (5) AquaRay 2000s to equal the wattage used of the EcoTech Pro, which then equals 1900 µMol•m²•sec PAR for the AquaRay. ABOUT DOUBLE (and likely more than double since the AquaRay published numbers are at more than twice the depth for PAR measurements)!!

The above example means that it takes DOUBLE the input energy for the EcoTech to equal the AquaRay, ASSUMING the spectrographs are equal, which in the case of the EcoTech Radion Pro it is quite similar but for wasted energy with the NUV emitters used, unlike the AquaRay 1500 & 2000. This can also be said of some of the lessor brands too, such as the Taotronic, Ocean Revive, Evergrow, etc.

Why the difference?
Simply less efficient emitters, a not as good a choice of emitter, and certainly a LOT of wasted energy as heat.

This is not to say the EcoTech Radion (or others) cannot keep Reef life, but these have more wasted energy as a percentage energy wattage input then the light energy output.

Please see the graph in this article below which clearly displays the difference in PUR between emitters:
Aquarium Lighting; PUR including Graph

Before I seem to pick on the EcoTech, let me perform a comparison of the EcoTech Radion Pro versus the Evergrow LED. assuming PAR and wattage used are the same, but use the VERY IMPORTANT PUR Spectrograph to determine light quality.

EcoTech Radion Pro versus Evergrow and Ocean Revive, PUR vs PARUsing the Evergrow (AKA Ocean Revive) as a comparison, and since this company does not publish a spectrograph (for obvious reasons in my opinion), I will compare emitters used to the superior EcoTech.

Since it is well established that the warm white emitters used are inferior as per the graph in the above cited reference, we can safely assume the Evergrow has a lessor spectrograph than the EcoTech.

So say both produced 500 µMol•m²•sec at 15", would both lights be equal?
The simple answer is NO!!

The Ecotech would be superior, as when if all parameters are equal, including PAR readings, the PUR is going to trump the PAR. This is why PAR reading should only be taken with a grain of salt and PUR should ALWAYS be considered in the mix since as it is the "photostynthetically USEFUL Radiation".

What a reef keeper who is considering one of the many LED lights now available should consider, especially the Chinese brands such as TaoTronics or Evergrow, as per the "scientific numbers", which again relates to PUR versus PAR is the emitters used. in terms of wattage draw and PUR output.

Keeping in mind that one can have a great PAR output, but a poor or even 0 PUR output, lets look at the Evergrow LED that utilizes 17.44 watts of energy output of the 120 watts for green and warm white emitters that produce nearly 0 PUR. As the green emitter might look nice, it in fact has 0 PUR and the warm white is very low in PUR.

Couple this with the fact that with the other less than optimal bridgelux emitters, use of current reduction technology; One requires a 120 watt LED fixture for the Evergrow, Taotronics, and many similar LEDs to even questionably have the same output as say an AquaRay Reef White 2000 Ultima at 30 watts of energy consumed so as to keep reef life.

One then has to ask why bother replacing your Metal Halides of 150 watts just to save 30 watts of energy, not to mention the high heat output that may still require chillers, and in the end the need for cooling fans for current reduction technology that has resulted in fan break downs and even fires????

Another aspect of PUR which is noteworthy is popular use of RGB features where by the user can control the color output of the lights.

The problem with this feature is when one alters the colors, you also alter the spectral output.

This may not affect PAR, but it MOST CERTAINLY affects PUR!!
These features should be avoided unless being used as a decorative light. I would not recommend these features for a serious reef or planted freshwater aquarium keeper.

Depth Penetration:

Blue LED Light Comparison, PUR vs PAR in Aquarium Lighting(Please click picture to enlarge)

Depth Penetration is another consideration when choosing lighting. This is where the Metal Halide used to "control the market".
However modern LEDs have closed this gap considerably with lights such as the AI Sol Vega Blue, Kessil, and the TMC AquaRay Fiji Blue, Reef Blue, 2000 Reef White, and Ocean Blue NP Ultima, among others high end LEDs intended for reef aquariums.

The blue spectrums are more important to many light sensitive corals for the Phototropic response aspect of PAR, in part since these corals, clams, etc. live in environments where little higher spectrums of light reaches these corals.
In an aquarium this becomes more important in depths much over 20-24 inches, depending upon the light used including its raw energy.

Even here consider what is used.
In the picture above where a sheet of computer paper is used to block light energy, you can see how the Fiji Blue with its unlensed XT-E emitters has a more deeper blue (down to about 420nm) light which generally would penetrate better than a higher nanometer color light.
However the Reef Blue with its more focused ML-E royal blue emitters has more depth penetration as shown in this picture.
For this reason, while the Fiji Blue might seem like the better choice for tanks over 24 inches in depth, this picture very simply shows this to not be correct.

This is not to say the Fiji Blue or similar violet emitters used by a few LED fixture are a poor choice, only that using focused emitters can also make a difference.
In fact, lights such as the Violet/Fiji Blue LED are useful in providing specific wavelengths many corals might require, my point is simply do not purchase these for optimum depth penetration.

Also sometimes a mix of "blues" such as in the EcoTech Radion can make a difference in depth penetration.
The "Reef White 2000HD Ultima NP" or "Ocean Blue NP Ultima" also includes the Osram Olson new "NP blue emitters" in their mix.

This is also where the new Osram Olson NP (Nature Perfect) Blue emitter excels since these are the first emitters designed specifically for reef aquarium life.
Basically these are a FULL SPECTRUM "Blue" LED emitter (see the spectrograph below)
Osram Olson Nature Perfect Reef LED emitter

Product Resources:
*TMC Ocean Blue 1500 Reef Aquarium LED Light Fixture
*Reef White 2000HD Ultima NP (for deeper aquariums)
*AquaBeam 600 Ultima LEDs, including the Fiji Blue

The picture below further displays some of the differences in "blue" depth penetrating lighting:

Blue Reef Aquarium LED Light Color Comparison

Now using the AI Sol Vega Blue as an example, it uses uses (4) Cree XM-L Cool White LEDs, (8) Cree XP-E Royal Blue LEDs, (4) Cree XP-E Blue LEDs, and (4) OSRAM OSLON Standard Deep Blue LEDs.
This is a good depth penetration light if only by virtue of the many blue emitters used and proprietary 40 and 70 degree lenses, however it does fall short in that it uses older bin low depth penetrating cool white and the non-patented XP emitters are not intended as a depth penetrating emitter (unlike the XR-E and even newer ML-E Blue). As well this light uses RBG features and Current Reduction, rather than PWM which further lowers PUR and wastes energy as heat instead of light energy.
Reference: Aquarium Lighting; PWM


Hopefully readers come away after reading this article and its many cited resources with a better understanding of PUR/photosynthetic action spectrum, not that I am stating certain LEDs or other lights in particular CANNOT keep photosynthetic life.
Part of my goal in writing this article is also pointing out that those who might have large DIY or other 220 watt LED panels with cool white, green, yellow emitters, etc. along with fans blowing away wasted energy as heat might have an excellent light system, just not an energy efficient system (the vertical farms further prove this). HOWEVER it is simply a lie for these same aquarium keepers to say a light system using say three AquaRay 30 watt tiles on a similar aquarium can only keep maybe "softies", the FACTS presented here along with the many references prove otherwise.

Using the growing Vertical Farm industry as an example again; they are attempting to get the most light for their energy input, which translates into profit. As someone going into the market to purchase asparagus could care less how the lights look on the asparagus, only that if a light using more middle spectrum light energy and wasting energy as heat is going to product asparagus that cost more!!
Now we as aquarium keepers DO care how our lights look, but with better spectrum control that focuses on "photosynthetic action spectrum" but still allows for full spectrum light we can have a nice balance of efficiency and light (which I have already shown with many high efficiency spectrograms) that presents our corals and plants well.

As well as to naysayers who say one cannot compare a vertical farm to freshwater aquarium plant keeping or the zooanthellic algae found in corals, I say NOT true!
While there are certainly differences including requiring more blues for deeper water specimens, there is still MUCH MORE in common than there are differences!

A common argument by many is that we do not know the specifics of individual plant or coral active photosynthetic light requirements, while this may be partly true, we do know enough.
What is hypocritical of these persons, is that they will use T5 lights designed for planted aquariums or reef aquariums. However the simple fact is these lights are more targeted than a warm white T12 fluorescent light one would purchase at Home Depot, YET I have kept lush planted aquariums back in the 1970s over aquariums with multiples of these shop lights.
So why do these same persons not just go ahead and use these T12 lights? We know the answer as they have already made the point of this article by using a modern aquarium specific T5 or T2 over a warm white or cool white T12 shop light!!!!

Another argument used to attack the science of PUR/photosynthetic action spectrum is that we can over saturate the plant or coral we are lighting by using targeted wave lengths.
This is nothing more than a "Red Herring" argument (being put out by a disrespectful employee/salesperson of a LED seller that should never have employed such a person).
The problem with this argument is we are no where near any light saturation with man made lighting. Let's apply common sense logic hear when dealing with such ludicrous arguments; if this were so, why is it we cannot go out in a boat on a reef at night with our most powerful metal halide lights and even come close to lighting to the depths and saturation the sun would provide in this same area during daylight hours??

Come on people, when persons such as this young lady come up with such ludicrous red herring arguments and refuse to do her homework and instead make disrespectful personal attacks on persons such as myself, you need to walk away and avoid those LED companies who employ such persons!

Further References/Resources

*Aquarium Lighting; Facts & Information

*PUR and Reef Aquarium Lighting: What is PUR? By Captive Aquatics
From this above cited article:
"For example: you are given a choice to illuminate your coral with two different lights, each with the same PAR value. However, one of these lights produces energy that peaks at 450nm, or the blue spectrum, and one peaks at 590nm, or the yellow spectrum. For zooxanthellae in your coral's tissue, the light peaking at 450nm will have greater PUR than the light that peaks at 590nm, although the PAR numbers are the same."



*Physical Properties of Water

*Small Polyp Stony Coral and Light Wavelengths

*Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures
An interesting study, but is more of a laboratory type study rather than a real world study (unlike the real world study in the CBS article I quoted earlier). I think this quote is more subjective than real world objective: "HPS lamps are equal to or better than the best LED fixtures because they have a high photon output near 600 nm and a low output of blue, cyan, and green light". As we know for both real world acropora and horticultural use, that blue light energy is still necessary and in fact is an efficient LED light source.

Recommended Aquarium Light Product Resources:
*Aquarium LED Light Fixtures; AquaRay
*T2 Planted/Refugium Aquarium Lights, Lighting
*SHO Planted Aquarium and Refugium Lights, Lighting

By Carl Strohmeyer-PAMR & Steven Wright
Copyright 2015

Other Recommended Reference & Product Sites

EcoTech Radion Pro Versus AquaRay LED Lights

A MUST read article/review for any truly serious marine reef keeper looking to get the best LED lights based on science and NOT purchase based on hype and good marketing

Reef Aquarium Care Basics
Saltwater Aquarium Information; Basic to Advanced

Aquarium or Pond UV Sterilization

TMC Premium Fluidized Sand Bed Bio Filter
TMC Premium Fluidized Sand Bed Bio Filters

Premium, second to NONE Aquarium Bio Filters, that with Oolitic Sand also maintain essential marine aquarium calcium levels, alkalinity, & electrolytes that are important to ALL Marine life, Goldfish, African Cichlids, Livebearers & more

Ocean Nutrition Seaweed Salad
San Francisco Bay Brand Seaweed Salad

"Seaweed Salad" is much more nutritious than spinach and lettuce. This product is recommended for all saltwater Damsels, Clownfish, and especially Marine Angels and Tangs

*Aquarium Ich; Identification, Treatment, Prevention

Hydor Smart Wave Controller
Hydor Smart Wave Controller

• Promotes a healthy reef aquarium or similar aquarium environment where wave action is desired by recreating natural currents found in nature
• Synchronous program for currents typical of barrier reefs and alternate for tides

TMC Advanced Venturi Saltwater Protein Skimmers

TMC Advanced Venturi Saltwater Protein Skimmers

A High performance, quality protein skimmer incorporating a patented venturi injection system which optimizes the perfect mixture of fine air bubbles and water and ensures intensive, efficient skimming and the removal of proteins and other harmful toxins (waste) from the aquarium.

For a friendly, Knowledgeable, aquarium forum with in a family atmosphere:
*Aquarium Forum; Everything Aquatic

Non Stop Air Pump, AC OR DC

This air pump pushes out 4L of air per minute, REGARDLESS of whether you have AC power or NOT

Labels: , , , , , , , , , ,

<< Home

This page is powered by Blogger. Isn't yours?

Article Research Sponsor
Remember, it is your purchases at AAP (both small & large) that keeps these world class information articles free.
Purchasing elsewhere at poor information websites such as Amazon or Dr Foster & Smith will only result in this free information going away someday!!


In Chronological order of writing with the newest at the top
  1. Aquarium or Pond Bio Load
  2. Tuberculosis in Fish
  3. PUR vs PAR in Aquarium Lighting
  4. Head Pressure in Aquarium and Pond Water Pumps
  5. Betta Fin Rot
  6. Angelfish Virus/Aids
  7. Activated Carbon
  8. Fish Baths/Dips as an aid to treatment
  9. Streptococcus gram positive bacterium in aquariums, Eye Infections
  10. Hydrogen Sulfide
    production in anaerobic De-Nitrification for Aquarium/Ponds
  11. Fish Shipping
  12. Aquarium Size, Fish Stunting
  13. Aquarium Algae,
    BBA & Brown Algae in particular
  14. Aquarium Salt (Sodium chloride) in Freshwater Aquariums
  15. Betta Habitat; Wild Bettas to Domestic Betta environment parameters
  16. HITH; Hole in the Head Disease
  17. Aquarium Protein Skimmers, Ozonizers
  18. Power Head/ Water Pump Review
  19. Molly Disease/ Mollies in an Aquarium
  20. Basic Fish Anatomy, Fin Identification
  21. Aquarium Moving/ Power Failures
  22. Octopus as Aquarium Pets
  23. Aquarium Nitrates
  24. Ichthyophonus protists, fungus in fish
  25. Aquarium and Pond Filter Media
    Types; Mechanical, Bio, Chemical
  26. Aquarium Water Conditioners (also Pond)
  27. Fish Parasites; Trematodes & Monogeneans; Annelids and Nematodes;
    Flukes, internal worms, Detritus Worms (often confused with Planaria), Micro Worms
  28. Aquarium Silicone Application;
    DIY Aquarium Repair & Glass thickness
  29. Pond Veggie Filters; DIY Bog Filter
  30. The difference between Plaster of Paris and Aquarium Products such a Wonder Shells:
    Identification, prevention & Treatment
  32. AQUARIUM TEST KITS; Use & Importance
  33. SEXING FISH; Basics
  34. Chocolate Chip, Knobby and Fromia Starfish
  35. Freshwater Velvet & Costia
  36. Usnic Acid as a Fish Remedy
  37. Aquarium Heaters; Types, information
  38. The Lateral Line in Fish, Lateral Line Disease
    or Head and Lateral Line Erosion (HLLE)
  39. Tap Water use in Aquarium; Chloramines, Chlorine
  40. Can Black Ghost Knife fish give an electric shock?
  41. Bio Wheel Review; Do Bio-Wheels really work?
  42. How do Fish Drink?
    Use of RO Water
  43. Cyclops, and Predatory Damselfly larvae
  44. Betta with Dropsy;
    Treatment and Prevention of DROPSY in all fish
  45. pH and KH problems in African Cichlid Aquarium
  46. Aquarium Gravel, which size?
  47. Blue green algae, Cyanobacteria in Ponds/Aquariums

If you have found this site helpful (or the sister site Aquarium and Pond Information),
please consider adding a link to one of our articles from your own blog or website.

OR a donation to help with the 1000s of hours of research and updates that go into these articles (even just $1 helps!):

American Aquarium Products along with "Aquarium/Pond Answers", and our VAST library of aquarium & pond keeping information found NOWHERE else in the word is currently FOR SALE for the right offer from an entity that will carry forward this company's 35+ year legacy of unique information (this also includes several other web and blog sites as well).
Only serious inquiries from qualified potential buyers will be considered

Recommended Related Information Sites & Products from our family of PROFESSIONAL aquarium and pond websites:

TMC V2 RO Filter systems; the very best you can buy with TDS meter:
Reverse Osmosis Aquarium Water Filter, TDSReverse Osmosis Aquarium Water Filters; with TDS Meter

A good compliment to RO water or for any freshwater aquarium to add ESSENTIAL Mineral Ions:
*Wonder Shells, Mineral Block

For help with your Aquarium Chemistry:
Aquarium Chemistry; In Depth Information

World Class Aquarium Information
For unique aquatic products (most professionally tested) and information;
*American Aquarium

Including the best in Quartz, Under gravel, and Titanium Submersible Heaters:
*Aquarium Heaters
*Hydor Undergravel Heaters

for the LATEST technology in Aquarium LED lighting:
LED Aquarium Lights
As well as a Premium simple "screw-in" LEDs for Aquariums or Hydroponics:
*PAR 38 LEDs

For economy HOB Filters that deliver the same or better results over filters often twice the price:
*Economy Aquarium Power Filters

*SunSun Reliable Submersible Power Head Aquarium Water Circulation PumpAquarium Power Head Pumps
Superior to Hagen or Marineland, yet more economical.

Sponge Filters that far outperform all other brands or DIY:
*Patented Lustar Hydro Sponge Aquarium Filters

UV Replacement Bulbs/Lamps:
UV Replacement bulbs for Tetra Mini, Cyprio Vorton, Bioforce, moreG23 & G11 UV Replacement Bulbs (PLL & PLS)
*Standard Straight Tube UV Lamps
*UV Bulbs directory

The Best in Value UV Sterilizers:
*Aquarium & Pond UV-C Sterilizers/Clarifiers
Compact Aquarium and Pond UV Sterilizer, better value than Tetra, Turbo TwistCOMPACT UV STERILIZERS, Terminator 7 watt to 36 watt
*TMC PREMIUM High Dwell Time Pond/Aquarium UV Sterilizers

For Aquarium Treatment Products

*Aquarium & Pond Treatments
*Furan 2

Proper Pond Filtration, Cleaning, care, chemistry & Basics for maintaining a beautiful garden pond:
*A CLEAR POND; Care & Information

Fish Food Information:

Premium Canister Aquarium Filters:
Rena Filstar High Performance Canister Filters

Aquarium Decorations, Decorative Coral, Driftwood, DeCoral, PlantsDecorative Coral
Aquarium Decorations such as

*Plastic Aquarium Plants

*Aquarium Driftwood

*Aquarium & Pond UV Sterilizer Use Articles
-Unique articles such as unique UV ideas as well as dispelling myths

*Directions/ Instructions/Downloads; Aquarium Pond Products

A unique web site with great insights:
Aquarium LED Information

Pocket UVC PurifierPocket Purifier Only $14.99
The unique hand held germ eliminating device; kills Flu, Staph & more without harmful chemicals such as bleach Great Gift

For Website Building/Hosting and who Aquarium Answers recommends (& uses for sister websites):
Website Hosting, powerful web site maker, ecommerce
Make a Website on

All articles are the copyrighted material of Carl Strohmeyer, these can be used ONLY in part and only with proper hyper link.
Use with Google Adwords/Adsense is STRICTLY prohibited without revenue sharing

Add to My Yahoo!

Ocean Decor

Great Links
Carl Strohmeyer; Biography
Internet Sales Tax; is anything but fair